public static class ByteKDTree.RandomisedBBFMeanSplit extends Object implements ByteKDTree.SplitChooser
Constructor and Description |
---|
ByteKDTree.RandomisedBBFMeanSplit()
Construct with the default values of 14 points per leaf (max), 128
samples for computing variance, and the 5 most varying dimensions
randomly selected.
|
ByteKDTree.RandomisedBBFMeanSplit(int maxLeafSize,
int varianceMaxPoints,
int randomMaxDims,
cern.jet.random.Uniform uniform)
Construct with the given values.
|
ByteKDTree.RandomisedBBFMeanSplit(cern.jet.random.Uniform uniform)
Construct with the default values of 14 points per leaf (max), 128
samples for computing variance, and the 5 most varying dimensions
randomly selected.
|
Modifier and Type | Method and Description |
---|---|
IntBytePair |
chooseSplit(byte[][] pnts,
IntArrayView inds,
int depth,
byte[] minBounds,
byte[] maxBounds)
Choose the dimension and discriminant on which to split the data.
|
public ByteKDTree.RandomisedBBFMeanSplit()
MersenneTwister
is created as the
source for random numbers.public ByteKDTree.RandomisedBBFMeanSplit(cern.jet.random.Uniform uniform)
MersenneTwister
is created as the
source for random numbers.uniform
- the random number sourcepublic ByteKDTree.RandomisedBBFMeanSplit(int maxLeafSize, int varianceMaxPoints, int randomMaxDims, cern.jet.random.Uniform uniform)
maxLeafSize
- Maximum number of items in a leaf.varianceMaxPoints
- Maximum number of points of variance estimation; all
points used if <=0.randomMaxDims
- Number of dimensions to consider when randomly selecting
one with a big variance.uniform
- the random number sourcepublic IntBytePair chooseSplit(byte[][] pnts, IntArrayView inds, int depth, byte[] minBounds, byte[] maxBounds)
ByteKDTree.SplitChooser
chooseSplit
in interface ByteKDTree.SplitChooser
pnts
- the raw datainds
- the indices of the data under considerationdepth
- the depth of the current data in the treeminBounds
- the minimum boundsmaxBounds
- the maximum bounds