001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.learner.perceptron; 031 032import java.util.ArrayList; 033import java.util.List; 034 035import no.uib.cipr.matrix.DenseVector; 036import no.uib.cipr.matrix.Vector; 037 038import org.openimaj.math.matrix.MeanVector; 039import org.openimaj.ml.linear.kernel.VectorKernel; 040 041/** 042 * 043 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 044 */ 045public class MeanCenteredKernelPerceptron extends MatrixKernelPerceptron{ 046 MeanVector mv = new MeanVector(); 047 048 /** 049 * @param k 050 */ 051 public MeanCenteredKernelPerceptron(VectorKernel k) { 052 super(k); 053 } 054 055 @Override 056 public void update(double[] xt, PerceptronClass yt, PerceptronClass yt_prime) { 057 mv.update(xt); 058 super.update(xt, yt, yt_prime); 059 } 060 @Override 061 public double[] correct(double[] in) { 062 return center(in); 063 } 064 065 @Override 066 public List<double[]> getSupports() { 067 List<double[]> pre = super.getSupports(); 068 List<double[]> ret = new ArrayList<double[]>(); 069 for (double[] ds : pre) { 070 ret.add(correct(ds)); 071 } 072 return ret; 073 } 074 075 private double[] center(double[] xt) { 076 double[] mvec = mv.vec(); 077 double[] ret = new double[xt.length]; 078 if(mvec == null) return ret; 079 080 for (int i = 0; i < mvec.length; i++) { 081 ret[i] = xt[i] - mvec[i]; 082 } 083 return ret; 084 } 085 086 public double[] getMean() { 087 return this.mv.vec(); 088 } 089 090}