001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.learner.perceptron; 031 032import java.util.ArrayList; 033import java.util.Arrays; 034import java.util.HashMap; 035import java.util.List; 036import java.util.Map; 037 038import org.openimaj.ml.linear.kernel.VectorKernel; 039import org.openimaj.util.pair.IndependentPair; 040 041import ch.akuhn.matrix.Matrix; 042 043/** 044 * An implementation of a simple {@link KernelPerceptron} which works with 045 * {@link Matrix} inputs and is binary. 046 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 047 */ 048public class MatrixKernelPerceptron extends KernelPerceptron<double[], PerceptronClass>{ 049 050 class WrappedDouble{ 051 private double[] d; 052 053 public WrappedDouble(double[] d) { 054 this.d = d; 055 } 056 @Override 057 public boolean equals(Object obj) { 058 if(obj instanceof WrappedDouble){ 059 WrappedDouble that = (WrappedDouble) obj; 060 return Arrays.equals(d, that.d); 061 } 062 return false; 063 } 064 065 @Override 066 public int hashCode() { 067 return Arrays.hashCode(d); 068 } 069 } 070 protected List<double[]> supports = new ArrayList<double[]>(); 071 protected List<Double> weights = new ArrayList<Double>(); 072 073 Map<WrappedDouble,Integer> index = new HashMap<WrappedDouble, Integer>(); 074 075 076 /** 077 * @param k the kernel 078 */ 079 public MatrixKernelPerceptron(VectorKernel k) { 080 super(k); 081 } 082 083 public double[] correct(double[] in) { 084 return in.clone(); 085 } 086 087 protected double mapping(double[] in){ 088 double ret = getBias(); 089 in = correct(in); 090 for (int i = 0; i < supports.size(); i++) { 091 double alpha = this.weights.get(i); 092 double[] x_i = correct(this.supports.get(i)); 093 ret += alpha * kernel.apply(IndependentPair.pair(x_i, in)); 094 095 } 096 return ret; 097 } 098 099 @Override 100 public PerceptronClass predict(double[] x) { 101 return PerceptronClass.fromSign(Math.signum(mapping(x))); 102 } 103 104 @Override 105 public void update(double[] xt, PerceptronClass yt, PerceptronClass yt_prime) { 106 WrappedDouble d = new WrappedDouble(xt); 107 double updateAmount = this.getUpdateRate() * (double) yt.v(); 108 if(!this.index.containsKey(d)){ 109 this.index.put(d, this.supports.size()); 110 this.supports.add(xt); 111 this.weights.add(updateAmount); 112 } else { 113 int index = this.index.get(d); 114 this.weights.set(index, this.weights.get(index) + updateAmount); 115 } 116 } 117 118 double getUpdateRate() { 119 return 1; 120 } 121 122 @Override 123 public List<double[]> getSupports() { 124 return this.supports; 125 } 126 127 @Override 128 public List<Double> getWeights() { 129 return this.weights; 130 } 131 132 @Override 133 public double getBias() { 134 double bias = 0; 135 for (double d : this.weights) { 136 bias += d; 137 } 138 return bias; 139 } 140 141 142 143 144}