001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.learner.matlib.loss; 031 032import org.apache.log4j.Logger; 033import org.openimaj.math.matrix.MatlibMatrixUtils; 034 035import ch.akuhn.matrix.Matrix; 036import ch.akuhn.matrix.Vector; 037 038 039public class MatSquareLossFunction extends LossFunction{ 040 Logger logger = Logger.getLogger(MatSquareLossFunction.class); 041 public MatSquareLossFunction() { 042 } 043 @Override 044 public Matrix gradient(Matrix W) { 045 Matrix ret = W.newInstance(); 046 Matrix resid = MatlibMatrixUtils.dotProduct(X, W); 047 if(this.bias!=null) 048 { 049 MatlibMatrixUtils.plusInplace(resid, this.bias); 050 } 051 MatlibMatrixUtils.minusInplace(resid, Y); 052 for (int t = 0; t < resid.columnCount(); t++) { 053 Vector row = this.X.row(t); 054 row.times(resid.get(t, t)); 055 MatlibMatrixUtils.setSubMatrixCol(ret, 0, t, row); 056 } 057 return ret; 058 } 059 @Override 060 public double eval(Matrix W) { 061 Matrix resid = null; 062 if(W == null){ 063 resid = X; 064 } else { 065 resid = MatlibMatrixUtils.dotProduct(X,W); 066 } 067 Matrix vnobias = MatlibMatrixUtils.copy(X); 068 if(this.bias!=null) 069 { 070 MatlibMatrixUtils.plusInplace(resid, bias); 071 } 072 Matrix v = MatlibMatrixUtils.copy(resid); 073 MatlibMatrixUtils.minusInplace(resid,Y); 074 double retval = 0; 075 076 for (int t = 0; t < resid.columnCount(); t++) { 077 double loss = resid.get(t, t); 078 retval += loss * loss; 079 logger.debug( 080 String.format( 081 "yr=%d,y=%3.2f,v=%3.2f,v(no bias)=%2.5f,error=%2.5f,serror=%2.5f", 082 t, Y.get(t, t), v.get(t, t), vnobias.get(t,t), loss, loss*loss 083 ) 084 ); 085 } 086 return retval; 087 } 088 @Override 089 public boolean isMatrixLoss() { 090 return true; 091 } 092}