001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.evaluation; 031 032import gov.sandia.cognition.math.matrix.Matrix; 033import gov.sandia.cognition.math.matrix.mtj.SparseMatrix; 034 035import java.util.List; 036 037import org.apache.log4j.Logger; 038import org.openimaj.ml.linear.learner.BilinearLearnerParameters; 039import org.openimaj.ml.linear.learner.BilinearSparseOnlineLearner; 040import org.openimaj.ml.linear.learner.loss.LossFunction; 041import org.openimaj.ml.linear.learner.loss.MatLossFunction; 042import org.openimaj.util.pair.Pair; 043 044public class SumLossEvaluator extends BilinearEvaluator { 045 Logger logger = Logger.getLogger(SumLossEvaluator.class); 046 047 @Override 048 public double evaluate(List<Pair<Matrix>> data) { 049 final Matrix u = learner.getU(); 050 final Matrix w = learner.getW(); 051 final Matrix bias = learner.getBias(); 052 final double sumloss = sumLoss(data, u, w, bias, learner.getParams()); 053 return sumloss; 054 } 055 056 public double sumLoss(List<Pair<Matrix>> pairs, Matrix u, Matrix w, Matrix bias, BilinearLearnerParameters params) { 057 LossFunction loss = params.getTyped(BilinearLearnerParameters.LOSS); 058 loss = new MatLossFunction(loss); 059 double total = 0; 060 int i = 0; 061 for (final Pair<Matrix> pair : pairs) { 062 final Matrix X = pair.firstObject(); 063 final Matrix Y = pair.secondObject(); 064 final SparseMatrix Yexp = BilinearSparseOnlineLearner.expandY(Y); 065 final Matrix expectedAll = u.transpose().times(X.transpose()).times(w); 066 loss.setY(Yexp); 067 loss.setX(expectedAll); 068 if (bias != null) 069 loss.setBias(bias); 070 logger.debug("Testing pair: " + i); 071 total += loss.eval(null); // Assums an identity w. 072 i++; 073 } 074 075 return total; 076 } 077}