001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.clustering.spectral; 031 032 033import org.apache.log4j.Logger; 034import org.openimaj.feature.DoubleFV; 035import org.openimaj.feature.DoubleFVComparison; 036import org.openimaj.feature.FeatureExtractor; 037import org.openimaj.ml.clustering.SimilarityClusterer; 038 039import ch.akuhn.matrix.SparseMatrix; 040 041/** 042 * Wraps the functionality of a {@link SimilarityClusterer} around a dataset 043 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 044 * 045 * @param <T> 046 */ 047public class NormalisedSimilarityDoubleClustererWrapper<T> extends DoubleFVSimilarityFunction<T> { 048 049 private double eps; 050 051 052 053 /** 054 * 055 * @param extractor 056 * @param eps 057 */ 058 public NormalisedSimilarityDoubleClustererWrapper(FeatureExtractor<DoubleFV,T> extractor, double eps) { 059 super(extractor); 060 this.eps = eps; 061 } 062 063 Logger logger = Logger.getLogger(NormalisedSimilarityDoubleClustererWrapper.class); 064 065 066 067 protected SparseMatrix similarity() { 068 final SparseMatrix mat = new SparseMatrix(feats.length,feats.length); 069 final DoubleFVComparison dist = DoubleFVComparison.EUCLIDEAN; 070 double maxD = 0; 071 for (int i = 0; i < feats.length; i++) { 072 for (int j = i; j < feats.length; j++) { 073 double d = dist.compare(feats[i], feats[j]); 074 if(d>eps ) 075 d = Double.NaN; 076 else{ 077 maxD = Math.max(d, maxD); 078 } 079 mat.put(i, j, d); 080 mat.put(j, i, d); 081 } 082 } 083 SparseMatrix mat_norm = new SparseMatrix(feats.length,feats.length); 084 for (int i = 0; i < feats.length; i++) { 085 for (int j = i; j < feats.length; j++) { 086 double d = mat.get(i, j); 087 if(Double.isNaN(d)){ 088 continue; 089 } 090 else{ 091 d/=maxD; 092 } 093 mat_norm.put(i, j, 1-d); 094 mat_norm.put(j, i, 1-d); 095 } 096 } 097 return mat_norm; 098 } 099 100 101 102}