001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.clustering.spectral; 031import java.io.File; 032import java.io.IOException; 033import java.util.ArrayList; 034import java.util.Arrays; 035import java.util.Collection; 036 037import org.apache.log4j.Logger; 038import org.openimaj.ml.clustering.SimilarityClusterer; 039 040import com.jmatio.io.MatFileWriter; 041import com.jmatio.types.MLArray; 042import com.jmatio.types.MLDouble; 043import com.jmatio.types.MLInt32; 044 045import ch.akuhn.matrix.DenseMatrix; 046import ch.akuhn.matrix.SparseMatrix; 047import ch.akuhn.matrix.eigenvalues.Eigenvalues; 048 049/** 050 * Built from a mixture of this tutorial: 051 * - http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5B0%5D.pdf 052 * And this implementation: 053 * - https://github.com/peterklipfel/AutoponicsVision/blob/master/SpectralClustering.java 054 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 055 * 056 */ 057public class DoubleSpectralClustering implements SimilarityClusterer<SpectralIndexedClusters>{ 058 final static Logger logger = Logger.getLogger(DoubleSpectralClustering.class); 059 protected SpectralClusteringConf<double[]> conf; 060 061 /** 062 * @param conf 063 * cluster the eigen vectors 064 */ 065 public DoubleSpectralClustering(SpectralClusteringConf<double[]> conf) { 066 this.conf = conf; 067 } 068 069 protected DoubleSpectralClustering() { 070 } 071 072 @Override 073 public SpectralIndexedClusters clusterSimilarity(SparseMatrix sim) { 074 return cluster(sim); 075 } 076 077 @Override 078 public SpectralIndexedClusters cluster(SparseMatrix data) { 079 // Get the laplacian, solve the eigen problem and choose the best 080 // Use the lowest eigen valued cols as the features, each row is a data item in the reduced feature space 081 Eigenvalues eig = spectralCluster(data); 082 PreparedSpectralClustering prep = new PreparedSpectralClustering(conf); 083 return prep.cluster(eig); 084 } 085 086 087 088 protected Eigenvalues spectralCluster(SparseMatrix data) { 089 // Compute the laplacian of the graph 090 final SparseMatrix laplacian = laplacian(data); 091 Eigenvalues eig = laplacianEigenVectors(laplacian); 092 093 return eig; 094 } 095 096 protected Eigenvalues laplacianEigenVectors(final SparseMatrix laplacian) { 097 // Calculate the eigvectors 098 Eigenvalues eig = conf.eigenChooser.prepare(laplacian); 099 eig.run(); 100 return eig; 101 } 102 103 protected SparseMatrix laplacian(SparseMatrix data) { 104 return conf.laplacian.laplacian(data); 105 } 106 107 @Override 108 public int[][] performClustering(SparseMatrix data) { 109 return this.cluster(data).clusters(); 110 } 111 112 @Override 113 public String toString() { 114 return String.format("%s: {Laplacian: %s, EigenChooser: %s, SpatialClusterer: %s}",simpleName(this),simpleName(conf.laplacian),simpleName(conf.eigenChooser),conf.internal); 115 } 116 117 private String simpleName(Object o) { 118 return o.getClass().getSimpleName(); 119 } 120}