001/**
002 * Copyright (c) 2011, The University of Southampton and the individual contributors.
003 * All rights reserved.
004 *
005 * Redistribution and use in source and binary forms, with or without modification,
006 * are permitted provided that the following conditions are met:
007 *
008 *   *  Redistributions of source code must retain the above copyright notice,
009 *      this list of conditions and the following disclaimer.
010 *
011 *   *  Redistributions in binary form must reproduce the above copyright notice,
012 *      this list of conditions and the following disclaimer in the documentation
013 *      and/or other materials provided with the distribution.
014 *
015 *   *  Neither the name of the University of Southampton nor the names of its
016 *      contributors may be used to endorse or promote products derived from this
017 *      software without specific prior written permission.
018 *
019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
029 */
030package org.openimaj.ml.clustering.kdtree;
031
032import java.util.ArrayList;
033import java.util.HashSet;
034import java.util.List;
035import java.util.Set;
036
037import org.apache.log4j.Logger;
038import org.openimaj.ml.clustering.kdtree.ClusterTestDataLoader.TestStats;
039
040/**
041 * Load clusters from http://people.cs.nctu.edu.tw/~rsliang/dbscan/testdatagen.html
042 * @author Sina Samangooei (ss@ecs.soton.ac.uk)
043 *
044 */
045public class ClusterTestDataLoader{
046        /**
047         * Test details
048         * @author Sina Samangooei (ss@ecs.soton.ac.uk)
049         *
050         */
051        public static class TestStats{
052                /**
053                 * EPS variable
054                 */
055                public double eps;
056                /**
057                 * minpts variable
058                 */
059                public int minpts;
060                /**
061                 * nclusters variable
062                 */
063                public int ncluster;
064                /**
065                 * noutliers variable
066                 */
067                public int noutliers;
068                /**
069                 * mineps variable
070                 */
071                public double mineps;
072        }
073        private int percluster = -1;
074        private boolean outliers = true;
075        
076        
077        /**
078         * 
079         */
080        public ClusterTestDataLoader() {
081                this.percluster = -1;
082        }
083        
084        /**
085         * @param percluster 
086         * @param outliers 
087         * 
088         */
089        public ClusterTestDataLoader(int percluster, boolean outliers) {
090                this.percluster = percluster;
091                this.outliers = outliers;
092        }
093
094        private Logger logger = Logger.getLogger(ClusterTestDataLoader.class);
095        private TestStats testStats;
096        private int[][] testClusters;
097        private double[][] testData;
098        /**
099         * @param data
100         * @return read {@link TestStats}
101         */
102        private TestStats readTestStats(String[] data) {
103                ClusterTestDataLoader.TestStats ret = new TestStats();
104                int i = 0;
105                ret.eps = Double.parseDouble(data[i++].split("=")[1].trim());
106                ret.minpts = Integer.parseInt(data[i++].split("=")[1].trim());
107                ret.ncluster = Integer.parseInt(data[i++].split("=")[1].trim());
108                ret.noutliers = Integer.parseInt(data[i++].split("=")[1].trim());
109                ret.mineps = Double.parseDouble(data[i++].split("=")[1].trim());
110                return ret;
111        }
112
113
114        /**
115         * @param data
116         * @return read the correct clusters
117         */
118        private int[][] readTestClusters(String[] data) {
119                int i = 0;
120                for (;data[i].length()!=0; i++);
121                for (i=i+1;data[i].length()!=0; i++);
122                List<int[]> clusters = new ArrayList<int[]>();
123                int count = 0;
124                for (i=i+1;i<data.length; i++){
125                        int[] readIntDataLine = readIntDataLine(data[i]);
126                        clusters.add(readIntDataLine);
127                        count += readIntDataLine.length;
128                }
129                logger .debug(String.format("Loading %d items in %d clusters\n",count,clusters.size()));
130                return clusters.toArray(new int[clusters.size()][]);
131        }
132        
133
134        /**
135         * @param string
136         * @return read
137         */
138        public int[] readIntDataLine(String string) {
139                String[] split = string.split(",");
140                int[] arr = new int[split.length-1];
141                int i = 0;
142
143                for (String s : split) {
144                        if(s.contains("<"))continue; // skip the first, it is the cluster index
145                        s = s.replace(">", "").trim();
146                        arr[i++] = Integer.parseInt(s)-1;
147
148                }
149                return arr;
150        }
151        /**
152         * @param data
153         * @return read the test data
154         */
155        private double[][] readTestData(String[] data) {
156                
157                int i = 0;
158                for (;data[i].length()!=0; i++);
159                List<double[]> dataL = new ArrayList<double[]>();
160                int start = i+1;
161                for (i=start;data[i].length()!=0; i++){
162                        dataL.add(readDataLine(data[i]));
163                }
164                logger.debug(String.format("Loading %d data items\n",dataL.size()));
165                return dataL.toArray(new double[dataL.size()][]);
166        }
167        private Set<Integer> existing(int[][] correct) {
168                Set<Integer> exist = new HashSet<Integer>();
169                for (int[] is : correct) {
170                        for (int i : is) {
171                                exist.add(i);
172                        }
173                }
174                return exist;
175        }
176
177        private double[] readDataLine(String string) {
178                String[] split = string.split(" ");
179                double[] arr = new double[]{
180                                Double.parseDouble(split[1]),
181                                Double.parseDouble(split[2])
182                };
183                return arr;
184        }
185
186        public void prepare(String[] data) {
187                this.testStats = this.readTestStats(data);
188                this.testClusters = this.readTestClusters(data);
189                this.testData = this.readTestData(data);
190                correctClusters();
191        }
192
193        private void correctClusters() {
194                
195                if(this.percluster != -1){
196                        double[][] correctedData = null;
197                        int[][] correctedClusters = new int[this.testClusters.length][this.percluster]; 
198                        int seen ;
199                        if(this.outliers){
200                                seen = this.testStats.noutliers;
201                                correctedData= new double[this.percluster * this.testClusters.length + seen][];
202                                for (int i = 0; i < seen; i++) {
203                                        correctedData[i] = this.testData[i];
204                                }
205                                
206                        }
207                        else{
208                                seen = 0;
209                                correctedData = new double[this.percluster * this.testClusters.length][];
210                        }
211                        for (int i = 0; i < this.testClusters.length; i++) {
212                                int[] clust = this.testClusters[i];
213                                for (int j = 0; j < this.percluster; j++) {
214                                        int d = clust[j];
215                                        correctedData[seen] = this.testData[d];
216                                        correctedClusters[i][j] = seen;
217                                        seen++;
218                                }
219                        }
220                        
221                        this.testClusters = correctedClusters;
222                        this.testData = correctedData;
223                }
224        }
225
226        public TestStats getTestStats() {
227                return this.testStats;
228        }
229
230        public double[][] getTestData() {
231                return this.testData;
232        }
233
234        public int[][] getTestClusters() {
235                return this.testClusters;
236        }
237}