001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.benchmark; 031 032import java.util.Random; 033 034import org.apache.commons.math.stat.descriptive.moment.Mean; 035import org.openimaj.math.matrix.CFMatrixUtils; 036import org.openimaj.math.matrix.MatlibMatrixUtils; 037import org.openimaj.math.matrix.MeanVector; 038import org.openimaj.time.Timer; 039 040import ch.akuhn.matrix.Matrix; 041import ch.akuhn.matrix.SparseMatrix; 042/** 043 * 044 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 045 */ 046public class MatlibMatrixMultiplyBenchmark { 047 048 public static void main(String[] args) { 049 SparseMatrix a = SparseMatrix.sparse(4, 1118); 050 MatlibMatrixUtils.plusInplace(a, 1); 051 SparseMatrix xtrow = MatlibMatrixUtils.transpose(SparseMatrix.random(1118,22917,1 - 0.9998818947086253)); 052 053 System.out.println("xtrow sparsity: " + MatlibMatrixUtils.sparsity(xtrow)); 054 055 MeanVector mv = new MeanVector(); 056 System.out.println("doing: a . xtrow"); 057 for (int i = 0; i < 10; i++) { 058 Timer t = Timer.timer(); 059 MatlibMatrixUtils.dotProductTranspose(a, xtrow); 060 061 mv.update(new double[]{t.duration()}); 062 System.out.println("time: " + mv.vec()[0]); 063 } 064 065 } 066}