001/**
002 * Copyright (c) 2011, The University of Southampton and the individual contributors.
003 * All rights reserved.
004 *
005 * Redistribution and use in source and binary forms, with or without modification,
006 * are permitted provided that the following conditions are met:
007 *
008 *   *  Redistributions of source code must retain the above copyright notice,
009 *      this list of conditions and the following disclaimer.
010 *
011 *   *  Redistributions in binary form must reproduce the above copyright notice,
012 *      this list of conditions and the following disclaimer in the documentation
013 *      and/or other materials provided with the distribution.
014 *
015 *   *  Neither the name of the University of Southampton nor the names of its
016 *      contributors may be used to endorse or promote products derived from this
017 *      software without specific prior written permission.
018 *
019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
029 */
030package org.openimaj.math.geometry.transforms.estimation;
031
032import java.util.List;
033
034import org.openimaj.math.geometry.point.Point2d;
035import org.openimaj.math.geometry.transforms.AffineTransformModel;
036import org.openimaj.math.geometry.transforms.TransformUtilities;
037import org.openimaj.math.geometry.transforms.estimation.sampling.BucketingSampler2d;
038import org.openimaj.math.geometry.transforms.residuals.AlgebraicResidual2d;
039import org.openimaj.math.model.fit.LMedS;
040import org.openimaj.math.model.fit.RANSAC;
041import org.openimaj.math.model.fit.RANSAC.StoppingCondition;
042import org.openimaj.math.model.fit.RobustModelFitting;
043import org.openimaj.util.function.Predicate;
044import org.openimaj.util.pair.IndependentPair;
045
046/**
047 * Helper class to simplify robust estimation of 2D affine transforms without
048 * having to deal with the nuts and bolts of the underlying robust model
049 * fitters, etc. The overall robust estimation process uses the normalised DLT
050 * algorithm (see {@link TransformUtilities#affineMatrix(List)}) coupled with
051 * either {@link RANSAC} or {@link LMedS} with a {@link BucketingSampler2d}
052 * sampling strategy for selecting subsets.
053 * <p>
054 * Non-linear optimisation is unncessary as the algebraic and geometric
055 * distances are equal in the affine case.
056 * 
057 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk)
058 */
059public class RobustAffineTransformEstimator implements RobustModelFitting<Point2d, Point2d, AffineTransformModel> {
060        private RobustModelFitting<Point2d, Point2d, AffineTransformModel> robustFitter;
061
062        /**
063         * Construct using the {@link LMedS} algorithm with the given expected
064         * outlier percentage
065         * 
066         * @param outlierProportion
067         *            expected proportion of outliers (between 0 and 1)
068         */
069        public RobustAffineTransformEstimator(double outlierProportion) {
070                robustFitter = new LMedS<Point2d, Point2d, AffineTransformModel>(
071                                new AffineTransformModel(),
072                                new AlgebraicResidual2d<AffineTransformModel>(),
073                                outlierProportion, true, new BucketingSampler2d());
074        }
075
076        /**
077         * Construct using the {@link RANSAC} algorithm with the given options.
078         * 
079         * @param threshold
080         *            the threshold on the {@link AlgebraicResidual2d} at which to
081         *            consider a point as an inlier
082         * @param nIterations
083         *            the maximum number of iterations
084         * @param stoppingCondition
085         *            the {@link StoppingCondition} for RANSAC
086         */
087        public RobustAffineTransformEstimator(double threshold, int nIterations, StoppingCondition stoppingCondition)
088        {
089                robustFitter = new RANSAC<Point2d, Point2d, AffineTransformModel>(new AffineTransformModel(),
090                                new AlgebraicResidual2d<AffineTransformModel>(), threshold, nIterations, stoppingCondition, true,
091                                new BucketingSampler2d());
092        }
093
094        /**
095         * Construct using the {@link LMedS} algorithm with the given expected
096         * outlier percentage
097         * 
098         * @param outlierProportion
099         *            expected proportion of outliers (between 0 and 1)
100         * @param modelCheck
101         *            the predicate to test whether an estimated model is sane
102         */
103        public RobustAffineTransformEstimator(double outlierProportion, Predicate<AffineTransformModel> modelCheck) {
104                robustFitter = new LMedS<Point2d, Point2d, AffineTransformModel>(
105                                new AffineTransformModel(modelCheck),
106                                new AlgebraicResidual2d<AffineTransformModel>(),
107                                outlierProportion, true, new BucketingSampler2d());
108        }
109
110        /**
111         * Construct using the {@link RANSAC} algorithm with the given options.
112         * 
113         * @param threshold
114         *            the threshold on the {@link AlgebraicResidual2d} at which to
115         *            consider a point as an inlier
116         * @param nIterations
117         *            the maximum number of iterations
118         * @param stoppingCondition
119         *            the {@link StoppingCondition} for RANSAC
120         * @param modelCheck
121         *            the predicate to test whether an estimated model is sane
122         */
123        public RobustAffineTransformEstimator(double threshold, int nIterations, StoppingCondition stoppingCondition,
124                        Predicate<AffineTransformModel> modelCheck)
125        {
126                robustFitter = new RANSAC<Point2d, Point2d, AffineTransformModel>(new AffineTransformModel(modelCheck),
127                                new AlgebraicResidual2d<AffineTransformModel>(), threshold, nIterations, stoppingCondition, true,
128                                new BucketingSampler2d());
129        }
130
131        @Override
132        public boolean fitData(List<? extends IndependentPair<Point2d, Point2d>> data) {
133                // Use a robust fitting technique to find the inliers and estimate a
134                // model using DLT
135                if (!robustFitter.fitData(data)) {
136                        // just go with full-on DLT estimate rather than a robust one
137                        robustFitter.getModel().estimate(data);
138
139                        return false;
140                }
141
142                return true;
143        }
144
145        @Override
146        public int numItemsToEstimate() {
147                return robustFitter.numItemsToEstimate();
148        }
149
150        @Override
151        public AffineTransformModel getModel() {
152                return robustFitter.getModel();
153        }
154
155        @Override
156        public List<? extends IndependentPair<Point2d, Point2d>> getInliers() {
157                return robustFitter.getInliers();
158        }
159
160        @Override
161        public List<? extends IndependentPair<Point2d, Point2d>> getOutliers() {
162                return robustFitter.getOutliers();
163        }
164}