001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.processing.convolution; 031 032import static java.lang.Math.exp; 033 034import org.openimaj.image.FImage; 035import org.openimaj.math.util.FloatArrayStatsUtils; 036 037/** 038 * Simple 2D Gaussian convolution. In most cases the {@link FGaussianConvolve} 039 * filter will do the same thing, but much much faster! 040 * 041 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 042 * 043 */ 044public class Gaussian2D extends FConvolution { 045 046 /** 047 * Construct with given kernel size and variance. 048 * @param width kernel width 049 * @param height kernel height 050 * @param sigma variance 051 */ 052 public Gaussian2D(int width, int height, float sigma) { 053 super(createKernelImage(width, height, sigma)); 054 } 055 056 /** 057 * Construct with given kernel size and variance. 058 * @param size kernel width/height 059 * @param sigma variance 060 */ 061 public Gaussian2D(int size, float sigma) { 062 super(createKernelImage(size, size, sigma)); 063 } 064 065 /** 066 * Create a kernel image with given kernel size and variance. 067 * @param size image height/width. 068 * @param sigma variance. 069 * @return new kernel image. 070 */ 071 public static FImage createKernelImage(int size, float sigma) { 072 return createKernelImage(size, size, sigma); 073 } 074 075 /** 076 * Create a kernel image with given kernel size and variance. 077 * @param width image width. 078 * @param height image height. 079 * @param sigma variance. 080 * @return new kernel image. 081 */ 082 public static FImage createKernelImage(int width, int height, float sigma) { 083 FImage f = new FImage(width, height); 084 int hw = (width-1)/2; 085 int hh = (height-1)/2; 086 float sigmasq = sigma * sigma; 087 088 for (int y=-hh, j=0; y<hh; y++, j++) { 089 for (int x=-hw, i=0; x<hw; x++, i++) { 090 int radsqrd = x*x + y*y; 091 f.pixels[j][i] = (float) exp( -radsqrd/ ( 2 * sigmasq ) ); 092 } 093 } 094 float sum = FloatArrayStatsUtils.sum(f.pixels); 095 return f.divideInplace(sum); 096 } 097}