001/**
002 * Copyright (c) 2011, The University of Southampton and the individual contributors.
003 * All rights reserved.
004 *
005 * Redistribution and use in source and binary forms, with or without modification,
006 * are permitted provided that the following conditions are met:
007 *
008 *   *  Redistributions of source code must retain the above copyright notice,
009 *      this list of conditions and the following disclaimer.
010 *
011 *   *  Redistributions in binary form must reproduce the above copyright notice,
012 *      this list of conditions and the following disclaimer in the documentation
013 *      and/or other materials provided with the distribution.
014 *
015 *   *  Neither the name of the University of Southampton nor the names of its
016 *      contributors may be used to endorse or promote products derived from this
017 *      software without specific prior written permission.
018 *
019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
029 */
030package org.openimaj.image.objectdetection.haar.training;
031
032import java.util.List;
033
034import org.openimaj.image.analysis.algorithm.SummedSqTiltAreaTable;
035import org.openimaj.image.objectdetection.haar.HaarFeature;
036import org.openimaj.util.array.ArrayUtils;
037import org.openimaj.util.function.Operation;
038import org.openimaj.util.parallel.Parallel;
039
040public class CachedTrainingData implements HaarTrainingData {
041        float[][] responses;
042        boolean[] classes;
043        int[][] sortedIndices;
044        List<HaarFeature> features;
045        int width, height;
046
047        float computeWindowVarianceNorm(SummedSqTiltAreaTable sat) {
048                final int w = width - 2;
049                final int h = height - 2;
050
051                final int x = 1; // shift by 1 scaled px to centre box
052                final int y = 1;
053
054                final float sum = sat.sum.pixels[y + h][x + w] + sat.sum.pixels[y][x] -
055                                sat.sum.pixels[y + h][x] - sat.sum.pixels[y][x + w];
056                final float sqSum = sat.sqSum.pixels[y + w][x + w] + sat.sqSum.pixels[y][x] -
057                                sat.sqSum.pixels[y + w][x] - sat.sqSum.pixels[y][x + w];
058
059                final float cachedInvArea = 1.0f / (w * h);
060                final float mean = sum * cachedInvArea;
061                float wvNorm = sqSum * cachedInvArea - mean * mean;
062                wvNorm = (float) ((wvNorm >= 0) ? Math.sqrt(wvNorm) : 1);
063
064                return wvNorm;
065        }
066
067        public CachedTrainingData(final List<SummedSqTiltAreaTable> positive, final List<SummedSqTiltAreaTable> negative,
068                        final List<HaarFeature> features)
069        {
070                this.width = positive.get(0).sum.width - 1;
071                this.height = positive.get(0).sum.height - 1;
072
073                this.features = features;
074                final int nfeatures = features.size();
075
076                classes = new boolean[positive.size() + negative.size()];
077                responses = new float[nfeatures][classes.length];
078                sortedIndices = new int[nfeatures][];
079                // for (int f = 0; f < nfeatures; f++) {
080
081                Parallel.forIndex(0, nfeatures, 1, new Operation<Integer>() {
082
083                        @Override
084                        public void perform(Integer f) {
085                                final HaarFeature feature = features.get(f);
086                                int count = 0;
087
088                                for (final SummedSqTiltAreaTable t : positive) {
089                                        final float wvNorm = computeWindowVarianceNorm(t);
090                                        responses[f][count] = feature.computeResponse(t, 0, 0) / wvNorm;
091                                        classes[count] = true;
092                                        ++count;
093                                }
094
095                                for (final SummedSqTiltAreaTable t : negative) {
096                                        final float wvNorm = computeWindowVarianceNorm(t);
097                                        responses[f][count] = feature.computeResponse(t, 0, 0) / wvNorm;
098                                        classes[count] = false;
099                                        ++count;
100                                }
101
102                                sortedIndices[f] = ArrayUtils.indexSort(responses[f]);
103                        }
104                });
105        }
106
107        @Override
108        public float[] getResponses(int dimension) {
109                return responses[dimension];
110        }
111
112        @Override
113        public boolean[] getClasses() {
114                return classes;
115        }
116
117        @Override
118        public int numInstances() {
119                return classes.length;
120        }
121
122        @Override
123        public int numFeatures() {
124                return responses.length;
125        }
126
127        @Override
128        public float[] getInstanceFeature(int idx) {
129                final float[] feature = new float[responses.length];
130
131                for (int i = 0; i < feature.length; i++) {
132                        feature[i] = responses[i][idx];
133                }
134
135                return feature;
136        }
137
138        @Override
139        public int[] getSortedIndices(int d) {
140                return sortedIndices[d];
141        }
142
143        @Override
144        public HaarFeature getFeature(int dimension) {
145                return features.get(dimension);
146        }
147}