001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.objectdetection.haar.training; 031 032import java.util.List; 033 034import org.openimaj.image.analysis.algorithm.SummedSqTiltAreaTable; 035import org.openimaj.image.objectdetection.haar.HaarFeature; 036import org.openimaj.util.array.ArrayUtils; 037 038public class BasicTrainingData implements HaarTrainingData { 039 SummedSqTiltAreaTable[] sats; 040 boolean[] classes; 041 HaarFeature[] features; 042 043 public BasicTrainingData(List<SummedSqTiltAreaTable> positive, List<SummedSqTiltAreaTable> negative, 044 List<HaarFeature> features) 045 { 046 sats = new SummedSqTiltAreaTable[positive.size() + negative.size()]; 047 classes = new boolean[sats.length]; 048 049 int count = 0; 050 for (final SummedSqTiltAreaTable t : positive) { 051 sats[count] = t; 052 classes[count] = true; 053 ++count; 054 } 055 056 for (final SummedSqTiltAreaTable t : negative) { 057 sats[count] = t; 058 classes[count] = false; 059 ++count; 060 } 061 062 this.features = features.toArray(new HaarFeature[features.size()]); 063 } 064 065 @Override 066 public float[] getResponses(int dimension) { 067 final float[] response = new float[sats.length]; 068 069 for (int i = 0; i < sats.length; i++) { 070 final float wvNorm = computeWindowVarianceNorm(sats[i]); 071 072 response[i] = features[dimension].computeResponse(sats[i], 0, 0) / wvNorm; 073 } 074 075 return response; 076 } 077 078 @Override 079 public boolean[] getClasses() { 080 return classes; 081 } 082 083 @Override 084 public int numInstances() { 085 return classes.length; 086 } 087 088 @Override 089 public int numFeatures() { 090 return features.length; 091 } 092 093 float computeWindowVarianceNorm(SummedSqTiltAreaTable sat) { 094 final int w = sat.sum.width - 1 - 2; 095 final int h = sat.sum.height - 1 - 2; 096 097 final int x = 1; // shift by 1 scaled px to centre box 098 final int y = 1; 099 100 final float sum = sat.sum.pixels[y + h][x + w] + sat.sum.pixels[y][x] - 101 sat.sum.pixels[y + h][x] - sat.sum.pixels[y][x + w]; 102 final float sqSum = sat.sqSum.pixels[y + w][x + w] + sat.sqSum.pixels[y][x] - 103 sat.sqSum.pixels[y + w][x] - sat.sqSum.pixels[y][x + w]; 104 105 final float cachedInvArea = 1.0f / (w * h); 106 final float mean = sum * cachedInvArea; 107 float wvNorm = sqSum * cachedInvArea - mean * mean; 108 wvNorm = (float) ((wvNorm >= 0) ? Math.sqrt(wvNorm) : 1); 109 110 return wvNorm; 111 } 112 113 @Override 114 public float[] getInstanceFeature(int idx) { 115 final float[] feature = new float[features.length]; 116 final SummedSqTiltAreaTable sat = sats[idx]; 117 118 final float wvNorm = computeWindowVarianceNorm(sat); 119 120 for (int i = 0; i < features.length; i++) { 121 feature[i] = features[i].computeResponse(sat, 0, 0) / wvNorm; 122 } 123 124 return feature; 125 } 126 127 @Override 128 public int[] getSortedIndices(int d) { 129 return ArrayUtils.indexSort(getResponses(d)); 130 } 131 132 @Override 133 public HaarFeature getFeature(int dimension) { 134 return features[dimension]; 135 } 136}