001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.experiment.gmm.retrieval; 031 032import org.openimaj.feature.FeatureExtractor; 033import org.openimaj.feature.FeatureVector; 034import org.openimaj.feature.local.LocalFeature; 035import org.openimaj.feature.local.list.LocalFeatureList; 036import org.openimaj.math.statistics.distribution.MixtureOfGaussians; 037import org.openimaj.ml.gmm.GaussianMixtureModelEM; 038import org.openimaj.ml.gmm.GaussianMixtureModelEM.CovarianceType; 039import org.openimaj.util.array.ArrayUtils; 040import org.openimaj.util.function.Function; 041 042import Jama.Matrix; 043 044/** 045 * This function turns a list of features to a gaussian mixture model 046 * 047 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 048 */ 049public class GMMFromFeatures implements Function< 050 LocalFeatureList<? extends LocalFeature<?,? extends FeatureVector>>, 051 MixtureOfGaussians 052 > 053{ 054 055 /** 056 * default number of guassians to train agains 057 */ 058 public static final int DEFAULT_COMPONENTS = 10; 059 /** 060 * default covariance type 061 */ 062 public static final CovarianceType DEFAULT_COVARIANCE = GaussianMixtureModelEM.CovarianceType.Spherical; 063 064 private GaussianMixtureModelEM gmm; 065 /** 066 * Defaults to {@link #DEFAULT_COMPONENTS} and 067 */ 068 public GMMFromFeatures() { 069 this.gmm = new GaussianMixtureModelEM(DEFAULT_COMPONENTS, DEFAULT_COVARIANCE); 070 } 071 072 /** 073 * @param type 074 */ 075 public GMMFromFeatures(CovarianceType type) { 076 this.gmm = new GaussianMixtureModelEM(DEFAULT_COMPONENTS, type); 077 } 078 079 /** 080 * @param nComps 081 */ 082 public GMMFromFeatures(int nComps) { 083 this.gmm = new GaussianMixtureModelEM(nComps, DEFAULT_COVARIANCE); 084 } 085 086 /** 087 * @param nComps 088 * @param type 089 */ 090 public GMMFromFeatures(int nComps,CovarianceType type) { 091 this.gmm = new GaussianMixtureModelEM(nComps, type); 092 } 093 094 @Override 095 public MixtureOfGaussians apply(LocalFeatureList<? extends LocalFeature<?,? extends FeatureVector>> features) { 096 System.out.println("Creating double array..."); 097 double[][] doubleFeatures = new double[features.size()][]; 098 int i = 0; 099 for (LocalFeature<?,?> localFeature : features) { 100 doubleFeatures[i] = ArrayUtils.divide(localFeature.getFeatureVector().asDoubleVector(), 128); 101 i++; 102 } 103 System.out.println(String.format("Launching EM with double array: %d x %d",doubleFeatures.length,doubleFeatures[0].length)); 104 return this.gmm.estimate(new Matrix(doubleFeatures)); 105 } 106 107 108 109}